Advanced Electrical Drives: Analysis, Modeling, Control

Rik De Doncker, Duco W.J. Pulle, and André Veltman, “Advanced Electrical Drives: Analysis, Modeling, Control?
S.pri nger 2010 | ISBN-10: 9400701799 | 462 Pages | File type: PDF | 13,6 mb

Electrical drives convert in a controlled manner, electrical energy into mechanical energy. Electrical drives comprise an electrical machine, i.e. an electro-mechanical energy converter, a power electronic converter, i.e. an electrical-to-electrical converter, and a controller/communication unit. Today, electrical drives are used as propulsion systems in high-speed trains, elevators, escalators, electric ships, electric forklift trucks and electric vehicles. Advanced control algorithms (mostly digitally implemented) allow torque control over a high-bandwidth. Hence, precise motion control can be achieved. Examples are drives in robots, pick-and-place machines, factory automation hardware, etc.

Most drives can operate in motoring and generating mode. Wind turbines use electrical drives to convert wind energy into electrical energy. More and more, variable speed drives are used to save energy for example, in air-conditioning units, compressors, blowers, pumps and home appliances.

Key to ensure stable operation of a drive in the aforementioned applications are torque control algorithms. In Advanced Electrical Drives, a unique approach is followed to derive model based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for this generalized modeling approach that ultimately leads to the development of universal field-oriented control algorithms. In case of switched reluctance machines, torque observers are proposed to implement direct torque algorithms.

From a didactic viewpoint, tutorials are included at the end of each chapter. The reader is encouraged to execute these tutorials to familiarize him or herself with all aspects of drive technology. Hence, Advanced Electrical Drives encourages “learning by doing? The CD, which accompanies this book, not only has all tutorials in the CASPOC environment, but also contains all figures used in this book to assist lecturers with their teaching. Furthermore, the experienced drive specialist may find the simulation tools useful to design high-performance controllers for all sorts of electrical drives.

[Fast Download] Advanced Electrical Drives: Analysis, Modeling, Control

Related eBooks:
Analysis and Design of Quadrature Oscillators
California 2014 Journeyman Electrician Study Guide
Design Recipes for FPGAs: Using Verilog and VHDL
Mobile Crowd Sensing: Incentive Mechanism Design
Nanoelectronics, Circuits and Communication Systems: Proceeding of NCCS 2017
Multi-terminal High-voltage Converter
Mechanics of Robotic Manipulation (Intelligent Robotics and Autonomous Agents) by Matthew T. Mason
Circuitbuilding Do-It-Yourself For Dummies
Selected Topics in Photonics
Operational Amplifiers: Design and Applications
David R. Shircliff - Build A Remote-Controlled Robot
Fundamentals of Spread Spectrum Modulation
Copyright Disclaimer:
This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.