Practical Time Series Analysis

Practical Time Series Analysis

by Dr. Avishek Pal and Dr. PKS Prakash
English | 2017 | ISBN: 1788290224 | 244 Pages | ePUB | 11 MB

This book is for anyone who wants to analyze data over time and/or frequency. A statistical background is necessary to quickly learn the analysis methods.

What You Will Learn:

Understand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science project
Develop an understanding of loading, exploring, and visualizing time-series data
Explore auto-correlation and gain knowledge of statistical techniques to deal with non-stationarity time series
Take advantage of exponential smoothing to tackle noise in time series data
Learn how to use auto-regressive models to make predictions using time-series data
Build predictive models on time series using techniques based on auto-regressive moving averages
Discover recent advancements in deep learning to build accurate forecasting models for time series
Gain familiarity with the basics of Python as a powerful yet simple to write programming language

Time Series Analysis allows us to analyze data which is generated over a period of time and has sequential interdependencies between the observations. This book describes special mathematical tricks and techniques which are geared towards exploring the internal structures of time series data and generating powerful descriptive and predictive insights. Also, the book is full of real-life examples of time series and their analyses using cutting-edge solutions developed in Python.

The book starts with descriptive analysis to create insightful visualizations of internal structures such as trend, seasonality and autocorrelation. Next, the statistical methods of dealing with autocorrelation and non-stationary time series are described. This is followed by exponential smoothing to produce meaningful insights from noisy time series data. At this point, we shift focus towards predictive analysis and introduce autoregressive models such as ARMA and ARIMA for time series forecasting. Later, powerful deep learning methods are presented, to develop accurate forecasting models for complex time series, and under the availability of little domain knowledge. All the topics are illustrated with real-life problem scenarios and their solutions by best-practice implementations in Python.

The book concludes with the Appendix, with a brief discussion of programming and solving data science problems using Python.


[Fast Download] Practical Time Series Analysis

Ebooks related to "Practical Time Series Analysis" :
Python Social Media Analytics
Big Data Analytics: 5th International Conference
Digital Business: Business Algorithms, Cloud Computing and Data Engineering
Surveillance Technologies and Early Warning Systems: Data Mining Applications for Risk Detection
Hadoop in 24 Hours, Sams Teach Yourself
Beginning DAX with Power BI: The SQL Pro¡¯s Guide to Better Business Intelligence
Group Processes: Data-Driven Computational Approaches (Computational Social Sciences)
php|architect's Guide to PHP Security
Stream Analytics with Microsoft Azure
Oracle Database 12c DBA Handbook
Copyright Disclaimer:
This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.